x^2-4x-77+x=-67-3x

Simple and best practice solution for x^2-4x-77+x=-67-3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-4x-77+x=-67-3x equation:



x^2-4x-77+x=-67-3x
We move all terms to the left:
x^2-4x-77+x-(-67-3x)=0
We add all the numbers together, and all the variables
x^2-4x+x-(-3x-67)-77=0
We add all the numbers together, and all the variables
x^2-3x-(-3x-67)-77=0
We get rid of parentheses
x^2-3x+3x+67-77=0
We add all the numbers together, and all the variables
x^2-10=0
a = 1; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·1·(-10)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*1}=\frac{0-2\sqrt{10}}{2} =-\frac{2\sqrt{10}}{2} =-\sqrt{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*1}=\frac{0+2\sqrt{10}}{2} =\frac{2\sqrt{10}}{2} =\sqrt{10} $

See similar equations:

| 8x-1=17+26 | | -2(-2y-19)+4y=-18 | | 2p-2=22 | | (2y+52)=78 | | 2(-x-1)=(-x+1) | | 17(8−n)+7n=116 | | 46=3x+6+5x | | .018=1/2.3x | | 13y+1+8y+5=132 | | 12=-4(a+7) | | 46=3x+6+5 | | .-2(-2y-19)+4y=-18 | | (X+2)(X+3)=(X+2)(3x-1) | | 105=1/2h(15) | | 2d-24=8 | | 2(-2x+2)+10x=4 | | -a/2=7 | | 5x=7x–2 | | -(5x+3)-4x=42 | | 3a+20+2a+26=90 | | (-2)(x+3)=-4=42 | | (2x+35)=25 | | 6-x/3=15 | | 1.5m=-8 | | (5x-2)3=139 | | 6y+2+3y+2=112 | | -s=10-3s | | 1+x=2/7 | | –10−6n=–5n | | 4-8x=-1-9x+8 | | 6(3x+5)=7(2x+2) | | x/3-2.4=3.2 |

Equations solver categories